
PhotoOCR: Reading Text in Uncontrolled Conditions

Alessandro Bissacco∗, Mark Cummins∗, Yuval Netzer∗, Hartmut Neven
Google Inc.

Abstract

We describe PhotoOCR, a system for text extraction from
images. Our particular focus is reliable text extraction from
smartphone imagery, with the goal of text recognition as a
user input modality similar to speech recognition. Commer-
cially available OCR performs poorly on this task. Recent
progress in machine learning has substantially improved
isolated character classification; we build on this progress
by demonstrating a complete OCR system using these tech-
niques. We also incorporate modern datacenter-scale dis-
tributed language modelling. Our approach is capable of
recognizing text in a variety of challenging imaging con-
ditions where traditional OCR systems fail, notably in the
presence of substantial blur, low resolution, low contrast,
high image noise and other distortions. It also operates
with low latency; mean processing time is 600 ms per im-
age. We evaluate our system on public benchmark datasets
for text extraction and outperform all previously reported
results, more than halving the error rate on multiple bench-
marks. The system is currently in use in many applica-
tions at Google, and is available as a user input modality in
Google Translate for Android.

1. Introduction
Extraction of text from uncontrolled images is a chal-

lenging problem with many practical applications. Reliable
text recognition would provide a useful input modality for
smartphones, particularly in applications such as translation
where the text may be difficult for a user to input by other
means. Text extraction is also useful in robotics, as a search
signal in large image collections, in wearable devices and
numerous other areas.

Commercially available OCR systems are designed pri-
marily for document images such as those from a flatbed
scanner, and perform poorly on general imagery. They typ-
ically rely on brittle techniques such as binarization, where
the first stage of processing is a simple thresholding oper-
ation used to divide an image into text and non-text pixels
[19]. Challenging input for existing commercial systems

∗These authors contributed equally.

Figure 1: An example of scene text detected and recognized
by our system.

include both scene text (such as Figure 1) and also more
document-like text that suffers from blur, low resolution or
other degradations that are common in smartphone imagery
(see Figure 2).

To address these problems, this paper describes the de-
sign of a complete OCR system built using modern com-
puter vision techniques. In particular we take advantage
of substantial recent progress in machine learning [6, 10]
and large scale language modelling [1]. Our system out-
performs previous approaches by a wide margin, more than
halving the error rate on the main public benchmarks. We
scale the individual components of our system to a regime
orders of magnitude larger than explored in prior work. In
particular, our deep neural network character classifier is
trained on up to 2 million manually labelled examples, and
our language model is learned on a corpus of more than a
trillion tokens. We maintain sub-second recognition latency
primarily though careful engineering. We have trained ver-
sions of our system for 29 languages with Latin script, plus
Greek, Hebrew and four Cyrillic languages.

2. Related Work

Design of a complete OCR system for natural images is
a substantial task, and as such there are relatively few exam-
ples in the literature. Many publications address sub-tasks

4321



such as text detection and isolated character classification.
One of the best performing text detection methods is the
stroke width transform of [8]. Isolated character classifica-
tion is widely used as a machine learning benchmark [17].
However the mid-level problem of fusing character classi-
fier and language model signals for complete text extrac-
tion is less commonly addressed. Application papers often
perform text detection and preprocessing before applying a
commercial OCR system designed for printed documents,
as for example in [4].

Among fully complete systems for the scene text extrac-
tion problem, language modelling is often less developed
than the image processing components. For example the
method of [18] uses a bigram language model together with
a set of hand-designed image features and a support vec-
tor machine classifier for text detection and recognition. In
the method of [27], text detection is assumed and recogni-
tion is performed by fusing appearance, self-similarity, lex-
icon and bigram language signals in a sparse belief propa-
gation framework. The work of [23] focuses on the use of
appearance similarity constraints to improve performance.
Several other systems simplify the problem by assuming
that the words to be recognized come from a fixed lexi-
con. The system of [20] describes a large-lexicon design,
using weighted finite state transducers to perform joint in-
ference over appearance, self-consistency and language sig-
nals. Other systems assume a small lexicon (transforming
the problem from OCR to word spotting). One such method
is [25], where detection and character classification are per-
formed in a single step using randomized ferns. The method
of [15] also relies on small lexicons to allow for a strong bi-
gram constraint in a conditional random field (CRF) model.

Finally, we note that the classic work on handwriting
recognition systems [14] tackles essentially the same prob-
lem as discussed in this paper, and our system bears many
similarities to that design. Work on low-resolution docu-
ment OCR [11] is also closely related.

3. System Design
In general outline our system takes a conventional multi-

stage approach to text extraction, similar to designs such
as [2]. We begin by performing text detection on the input
image. The detector returns candidate regions containing
individual lines of text. Detection is tuned for high recall,
relying on later stages of processing to reject false positives.
Candidate text lines from the detection stage are processed
for text recognition. Recognition begins with a 1D over-
segmentation of the text line to identify candidate character
regions. We then search through the space of segmentations
to maximize a score which combines the character classi-
fier and language model likelihoods. The top hypotheses
produced by this search are then re-scored using additional
signals which are too expensive to apply during initial infer-

ence. The reason for this staged approach is computational:
it would be prohibitively expensive to apply full inference
at all locations and scales in the input image, or to apply our
character classifier at all locations in each candidate text re-
gion. Our primary intended application is text extraction as
an input modality for smartphone users, which limits total
acceptable processing time to at most one or two seconds
per image. This constraint informs several of our design
decision. The following sections describe each stage of the
process in detail.

3.1. Text Detection

A detailed description of the text detection portion of our
system is outside the scope of this paper. Briefly, we com-
bine the output of three different text detection approaches.
The first approach is a Viola-Jones style boosted cascade
of Haar wavelets [24]. The second approach extracts con-
nected components from a binarized image and uses graph
cuts to find a text/non-text labelling by minimizing an MRF
with learned energy terms, broadly similar to [21]. The final
detector is a novel approach based on anisotropic Gaussian
filters. This portion of the system also deals with splitting
text regions into individual lines and correcting orientation
to horizontal, both of which are relatively trivial. For the re-
mainder of the paper we will focus on extracting text from
the horizontal line region candidates.

3.2. Over-Segmentation

The over-segmentation step divides the text line into seg-
ments which should contain no more than one character (but
characters may be split into multiple segments). This is a
1D segmentation task. We combine the output of two dif-
ferent segmentation methods to improve recall.

The first segmentation method used is typical of docu-
ment OCR systems. The input image is binarized using
Niblack binarization [19], a morphological opening oper-
ation is applied, and connected components are extracted
from the resulting binary image. This simple approach is
very effective on easier images, but can fail in the presence
of blur, low resolution, complex backgrounds, etc.

The second segmentation approach is intended to han-
dle these more complex cases. It consists of a binary slid-
ing window classifier, trained to detect segmentation points
between characters. We use a combination of HOG fea-
tures [5] and Weighted Direction Code Histogram features
(WDCH) [13]. WDCH features are similar to HOG com-
puted on a binarized version of the image, and are typical
in OCR systems. A binary logistic classifier is trained on
the combined feature vector. The classifier is evaluated in
a window of width equal to the line height with a stride of
0.1 times line height, and all responses above a threshold
are accepted as segmentation points. We evaluated multiple
classifier and feature options for this segmenter and chose

4322



this configuration as balancing speed and recall.
The segmentation stage outputs a vector B containing

the positions of the detected segmentation points, including
the start and end points of the text detection box.

3.3. Beam Search

We now search the space of segmentations to find one
which maximizes our score function, given by:

S(b, c) =
1

N

∑
i=1:N

log Ψ (ci, bi, bi+1)+α log Φ (ci, ci−1, . . . , c1)

(1)
Here b ⊂ B is a vector of N + 1 segmentation points bi
which define a segmentation of the line into N segments.
c is vector of class assignments, the ith segment being as-
signed label ci. Ψ (ci, bi, bi+1) is the classifier probability
for class assignment ci to the pixels between bi and bi+1.
Φ (ci, ci−1, . . . , c1) is the language model probability for
the ith class assignment given the previous class assign-
ments in the line. α controls the relative strength of the
character classifier and language model. The total score
is thus the average per-character log-likelihood of the text
line under the classifier and language model. We choose
the per-character average as it gives a score which is com-
parable across lines with different numbers of recognized
characters. We now wish to find b, c that maximize S.

We perform this maximization using beam search [22],
which is the typical approach for similar problems in speech
recognition. The result space naturally forms a graph de-
fined by the segmentation points. Beam search is a best-first
search through this graph which relies on the fact that each
node in the graph is a partial result (corresponding to the
recognition of part of the text line) which can be scored by
our scoring function. At each step of the beam search, all
successors of the current search nodes are scored, but only a
fixed number of top scoring nodes (the beam width) are re-
tained for the next search step. We initialize the search sim-
ply at the left edge of the text detection box. We prune the
search slightly by dropping segmentation candidates whose
aspect ratio is too large.

Clearly there is no guarantee of locating an optimal solu-
tion using beam search. The reason for using this approach
in preference to a framework such as a CRF is that it per-
mits greater flexibility in the design of the score function.
In particular, the language model imposes high-order con-
straints (up to order eight in our case) which make exact
inference in a CRF-type framework effectively intractable.
In our experience, it is better to use a good score function
with approximate inference than a weaker score function
with perfect inference. Results are presented in Section 5
which suggest that in any case our approximate inference
often locates the optimal solution, despite the combinato-
rial search space. The practical bottleneck on recognition

performance appears to come from classifier and language
model quality, rather than failure to find the solution which
maximizes the score function.

3.4. Character Classifier

We use a deep neural network for character classifica-
tion. We have explored networks trained on both raw pix-
els and HOG features. The networks trained on raw pix-
els achieve similar or slightly better performance than those
trained on HOGs. However, we find that the raw pixel net-
works are deeper and wider than HOG-input networks at
comparable performance. Even accounting for HOG com-
putation time, the HOG-input networks have lower compu-
tational cost. Since we are designing for speed as well as
high accuracy, we find that overall the HOG-input networks
are preferable. This finding may be specific to text, since
the strong gradients present in characters are a good match
for HOG features.

Our best performing configuration is a network with five
hidden layers in configuration 422-960-480-480-480-480-
100. The layers are fully connected and use rectified linear
units [16]. The 422-parameter input layer consists of HOG
coefficients and three geometry features. The output layer
is a softmax over 99 character classes plus a noise class. We
quantize weights and activations to 8 bits, which improves
speed with negligible accuracy penalty. Details of training
are discussed in Section 4.

We run this classifier on all combinations of segments
chosen by the beam search. Since the segmentation pro-
vided is only 1D, for each segment we refine the top and
bottom boundaries by a simple heuristic which snaps to the
first strong edge. This provides a more tightly cropped char-
acter to the classifier. We compute two HOG features on
this character patch. The first uses a 5x5 grid with 5 bins
per histogram, computed directly on the (non-square) patch.
The second uses unsigned gradient histograms in a 7x7 grid
with 6 bins per histogram. The character patch is normal-
ized to 65x65 pixels for computing this second feature. The
three geometry features used in addition to HOG encode the
original aspect ratio and the position of the top and bottom
edge of the pixels relative to the height of the overall text
detection.

It is worth mentioning that we also explored convolu-
tional neural networks, but they are not computationally
competitive with non-convolutional networks in our archi-
tecture. Our segmentation based approach offers fewer op-
portunities for the convolutional network to reuse computa-
tions compared to a sliding window design.

3.5. Language Model

In structured classification tasks such as OCR and speech
recognition, a strong language prior makes a major contri-
bution to final performance. Some classes are almost indis-

4323



tinguishable as isolated examples, such as the number “1”
and the letter “l”; these cases must be disambiguated by
context.

We use a standard ngram approach for language mod-
elling. Because our system is designed for use in datacenter
environments, we adopt a two-level language model design.
A compact character-level ngram model is held in RAM by
each OCR worker. This model provides the beam search
language score, Φ (ci, ci−1, . . . , c1). This score forms part
of the inner loop of our system, so rapid evaluation is es-
sential. Our second level language model is a much larger
distributed word-ngram model using the design of [1]. This
model is shared by all OCR workers in a data center and
is accessed over the network. Due to the latency overhead
this imposes, we evaluate this model only during reranking
(Section 3.6).

For our character-level ngram model, we are quite lim-
ited in RAM budget. A copy of this model is held by
each OCR worker. A single worker is designed to recog-
nize multiple languages simultaneously; at present we sup-
port 29 languages with Latin script. Consequently we al-
locate only 60 MB of RAM per language for the character
ngram model. In this regime, in common with [3], we have
found little benefit in going beyond 8-gram models. We
train each of these model on 108 characters of training data,
retaining all ngrams which occur 40 times or more. For a
fixed size model, we find negligible benefit in increasing
the training data beyond 108 characters. We have also com-
pared smoothing methods and we find that the very sim-
ple Stupid Backoff method [1] performs as well as more
complex methods in terms of final recognition performance.
Since it permits an optimized implementation, we choose
this approach.

In addition to the character ngram model, we also main-
tain a simple dictionary of the top 100k words per language.
We use this as an additional signal in our language score; it
provides a small performance increase over the character
ngram model alone. The dictionary provides a soft scoring
signal only; recognition is not limited to dictionary words.

Our second-level distributed language model uses word
4-grams. The English model is trained on a 1.3 × 1012 to-
ken training set. The final model contains 2 × 1010 ngrams
over a 1M word vocabulary. Our models of non-English
languages are approximately 3x smaller in ngram count and
10x smaller in training set size. At serving time the com-
bined multi-language model is distributed over 80 machines
and occupies approximately 400 GB of RAM. In the word-
level language model we also incorporate a small number
of parsers for common patterns such as emails and URLs,
which are not well captured by ngrams.

3.6. Reranking

The beam search terminates with ranked list of recogni-
tion hypotheses, of beam width size. We perform several
post-processing and reranking operations to this list:

Punctuation Search
The first operation we perform is a punctuation search.
Punctuation is recognized in the same way as any other
character class in the initial beam search, but recall is com-
paratively low since it can be difficult to distinguish small
punctuation characters from background clutter. We thus
perform a second pass search for punctuation taking advan-
tage of the stronger scale and location constrains available
after initial recognition.

Secondary Language Scoring

As discussed in Section 3.5, we use a distributed word-level
language model which cannot be accessed during the beam
search for latency reasons. We instead use this model to
re-score the final recognition hypotheses. We re-score in a
straightforward way by adding log-likelihoods:

S∗(b, c) = S(b, c) + βL(c) (2)

where L(c) is the score from the word-ngram model, and β
is a weighting parameter. As in Equation 1, we use mean
per-character log-likelihood for the language model score,
in order to make it comparable between lines of different
lengths. Out-of-vocabulary words are assigned a fixed per-
character log-likelihood.

Shape Model

We also re-score the hypotheses using shape information.
The shape model computes the expected relative size and
position of character bounding boxes for the recognized text
in 20 common fonts, and scores the line based on the devi-
ation from the best matching font. The shape model gives
a small but consistent improvement to overall performance.
In principle this could be incorporated into the beam search
score, but for computational reasons we use it as a reranker.

Junk Filter

Finally we apply a junk filter with a few simple heuristics
to discard common OCR errors such as recognizing repeat-
ing vertical structures as “iiiii”. While these are naturally
penalized by the language model, a simple filter provides
some additional precision improvement.

4. Training
We train our neural network character classifier using

stochastic gradient descent with Adagrad [7] and dropout
[10], using the distributed training design described in [6].
We minimize log-loss. We achieve best performance with

4324



dropout of 5% in the input layer and 12.5% in the hid-
den layers. This dropout setting is lower than has been re-
ported elsewhere, but seems consistent with the relatively
small size of our network and the large quantity of training
data used. We train the network on 200 cores for two days.
We trained several dozen networks with varying depth and
width parameters and selected the candidate which offered
the best compromise between accuracy and computational
cost. We have tried training the best network for longer, but
it does not appear to improve further.

Our training set consists of 2.2 million manually labelled
characters. The training set is extracted from a random sam-
ple of the past OCR queries of users who have agreed for
their data to be used to improve Google services. Text lines
in the imagery are manually annotated with the class of each
character and the segmentation points between characters.
We do not use synthetic data or synthetic distortions. The
data is used to train both our segmenter and character clas-
sifier. We first train the segmenter on the labelled segmen-
tation points. To train the character classifier, we do not
use the manually segmented characters directly since they
may be dissimilar to what our automatic segmentation pro-
duces. Instead we run our segmenter on the annotated lines
and choose segments visited by the beam search which have
high overlap with a manually labelled character as positive
training examples. We also select training examples for a
“noise class” consisting of segments visited by the beam
search which overlap partial/multiple ground truth charac-
ters or background clutter. The final training set consists of
45% noise examples and 55% character class examples, for
3.9 million total training examples.

For the Latin alphabet version of our system, we learn 99
character classes plus the noise class. The character classes
cover upper and lowercase letters, punctuation and some
additional common characters such as currency symbols.
Many characters exist in multiple diacritic variants, such as
“aäáâ”. For training we consider these variants together as
a single class, and rely on the language model to select the
correct variant at recognition time. Our final output is thus
from a larger space of several hundred possible character
classes.

Finally we set free parameters of the system, such as
the language model weights α and β, by optimizing end-to-
end system performance on a validation set using Powell’s
method.

Self-supervised training data

We built an additional larger training set using a self-
supervision mechanism. A full description of the system
is beyond the scope of the paper, however we present a
brief summary here. We began by running our OCR system
on 5 million images from the logs of Google Goggles and
Google Translate for Android. The key idea is that much

Figure 2: An example of training data automatically gen-
erated by our self-supervision approach. The green boxes
show characters which have been extracted by our system
and verified by alignment against an online text. The lower
part of the figure shows an enlarged view of one of the au-
tomatically ground truthed regions. To preserve privacy the
image shown here was taken by the authors, but it is typical
of the user imagery in our logs.

of the text in these real-world images also exists verbatim
somewhere on the web. If we achieve partially correct text
extraction from an image, we can often locate the source
text by issuing multiple web queries. We can verify the
match by performing edit distance based alignment. This
produces a partial ground truth for the image. An example
result is shown in Figure 2. The extracted character bound-
ing boxes come from our OCR system, but any errors in
the character labels are corrected by alignment against the
source text. The accuracy of labels produced by this ap-
proach is at least as good as our manually labelled data. The
majority of matches come from images of dense text such
as newspaper articles. However, we find matches for a wide
variety of other objects such as food containers, posters,
wine bottles, packaged goods, etc.

From 5 million source images, we find acceptable
matches for 200k, yielding 40 million automatically la-
belled characters. These characters are obviously biased to-
wards easier examples, so to augment our training set we
use 4 million characters with the lowest confidence scores.

5. Results

For comparison to other published work, we first present
results on public OCR benchmarks. The most suitable pub-

4325



Figure 3: Some examples of text correctly read by our system. Images are from the ICDAR 2013 test set.

Algorithm
Word

Recognition
Rate (%)

Norm.
Edit

Distance
PhotoOCR 82.83 122.7

NESP 64.20 360.1
PicRead 57.99 332.4

Baseline (ABBYY) 45.30 539.0

Table 1: Results on the ICDAR 2013 Robust Reading Com-
petition scene text test set [12], showing closest competitors
to PhotoOCR on recognition rate and edit distance metrics.
The baseline result is from a commercially available OCR
system.

lic benchmark for unconstrained OCR is the ICDAR 2013
Robust Reading Competition scene text test set [12]. This is
a cropped word recognition task with an unlimited vocabu-
lary. Our results are shown in Table 1. Our system sets new
records on both competition metrics. Our word recognition
rate is 82.83%. If we ignore capitalization and punctuation
differences, accuracy rises to 87.6%. Examples of true and
false positives are shown in Figures 3 and 4. The complete
set of classifications is available on the competition website.

Another popular benchmark is the Street View Text
(SVT) dataset [25]. This benchmark measures word-
spotting, a simplified OCR problem in which each image is
annotated with a lexicon of about 50 words, of which one is

Algorithm
Word

Recognition
Rate (%)

PhotoOCR 90.39
Goel et al. [9] 77.28

Mishra et al. [15] 73.26
Novikova et al. [20] 72.9

Wang et al. [26] 70.0
Baseline (ABBYY) [9] 35.0

Table 2: Cropped word recognition accuracy on the Street
View Text dataset (with lexicon) [25].

the ground truth and the others are distractors. We have not
designed our system for this task, but we can make simple
use of the lexicon by performing unaided OCR and then se-
lecting the lexicon word with smallest edit distance as the fi-
nal result. Results are shown in Table 2. Our system has less
than half the error rate of the nearest competitor, despite not
being designed to fully exploit the task constraints. In fact,
if we ignore the lexicon entirely, we still achieve 77.98% ac-
curacy (ignoring case and punctuation differences), which
would still be a new record for this dataset.

We also present results on our internal test set consist-
ing of images sampled from the logs of Google Translate
for Android. This test set reflects the performance of OCR
as a smartphone input modality in real world conditions.

4326



(a) “forever” 6= “Forever” (b) “UCOUC” 6= “VENUE”

(c) “tted".co.uk” 6= “tetley.co.uk” (d) “saske” 6= “Service”

(e) “THUNDERBU” 6= “THUNDERBALL”

Figure 4: Some examples of images where the extracted text
is incorrect. The captions show the recognized text versus
the ground truth.

Compared to the ICDAR imagery, typical Google Trans-
late imagery has much lower resolution and is more often
subject to blur, but is less likely to feature unusual fonts or
complex backgrounds. Figure 2 is a typical example. A fur-
ther salient difference in the tasks is that ICDAR tests iso-
lated word recognition, which limits the performance gains
available from language modelling. In contrast, the Google
Translate task evaluates the system on lines of text. For
comparability to ICDAR results, we measure performance
given ground truth text detection. Results and analysis for
this test set are given in Table 3 and Figures 5 and 6.

The impact of training set size on final performance is
shown in Table 3. Classifier accuracy increases with train-
ing set size up to our largest available set (Figure 5). The
use of self-supervised data in the largest training set seems
to give results in line with the overall trend. We empha-
size that our neural network configuration was chosen to
balance speed and accuracy. Higher classifier performance
can be achieved using a larger network, but at unacceptable
computational cost.

The word recognition rate of our system incorporating all
signals is shown in Figure 6 and the right column of Table
3. Full system performance also increases up to the largest
training set size, although it appears to flatten a little more
than classifier accuracy. Word recognition rate is measured
as an exact match to the ground truth string, including case
and punctuation.

We also analysed the impact of the language models on
the word error rate of the overall system. A baseline sys-
tem without any language model (character classifier alone)
recognizes only 39.2% of words correctly. Adding the
character-level language model reduces the word error rate
by 39.5%. Much of this is attributable to resolving sim-
ple ambiguities such as “0” vs “O”, case consistency, etc.
Adding the word level model gives a further 4% word er-

Training Set
Size

Character
Classifier

Accuracy (%)

Word
Recognition

Rate (%)
1.1 × 107 (*) 92.18 70.99

3.9 × 106 91.79 70.47
1.9 × 106 90.98 68.83
9.7 × 105 90.60 69.20
4.9 × 105 89.19 65.77
2.5 × 105 88.38 60.50
1.2 × 105 86.74 53.20
6.3 × 104 85.21 46.74

Table 3: Performance versus training set size on the Google
Translate test set. The training set includes noise samples,
labelled characters comprised 55% of the total. Recognition
rate excludes the noise class. The largest training set uses
self-supervised data. See text for details.

ror rate reduction. This seems small relative to the impact
of the character language model, but represents resolving
many harder examples that are difficult to disambiguate in
any other way.

Finally, we estimated the performance impact of the
beam search by computing results with a beam width 1000x
larger than used in our baseline configuration. The larger
beam width improves recall by only 0.5%, suggesting that
approximate inference is not an important limit on perfor-
mance.

Our processing time per image is 600 ms average and
1.4 secs at 95% percentile. This includes both text detection
and recognition for a full image containing multiple text
lines; note however that we parallelize the computation by
sending each line of text to a different OCR worker. These
latency measurements apply to all the presented results with
the exception of the ICDAR and SVT sets, where we used a
configuration of the system tuned for higher recall at greater
computational cost. In this configuration no text detection
is required, and recognition alone took 1.4 secs average on
a single machine.

6. Conclusion

We have presented a complete system for text extrac-
tion from challenging images. Our system is built on re-
cent machine learning approaches for improved classifier
performance, combined with large training sets and dis-
tributed language modelling. The system achieves record
performance on all major text recognition benchmarks, and
high quality text extraction from typical smartphone im-
agery with sub-second latency. Our analysis demonstrates
the importance of training set size, even in designs where
the classifier complexity is bounded by latency constraints.

4327



Character Classifier Accuracy

0.1M 0.32M 1M 3.16M 10M
0.84

0.86

0.88

0.9

0.92

Training Set Size (log scale)

C
ha

ra
ct

er
 C

la
ss

ifi
er

 A
cc

ur
ac

y

Figure 5: Character classifier accuracy versus training set
size. The final point uses self-supervised data. See Table 3.

Word Recognition Rate

0.1M 0.32M 1M 3.16M 10M

0.5

0.55

0.6

0.65

0.7

Training Set Size (log scale)

W
or

d 
R

ec
og

ni
tio

n 
R

at
e 

(f
ul

l s
ys

te
m

)

Figure 6: Word recognition rate of the complete system ver-
sus training set size. The final point uses self-supervised
data. See Table 3.

References
[1] T. Brants, A. Popat, P. Xu, F. Och, and J. Dean. Large lan-

guage models in machine translation. In EMNLP, 2007.
[2] T. Breuel. The OCRopus open source OCR system. In

IS&T/SPIE 20th Annual Symposium, 2008.
[3] B. Carpenter. Scaling high-order character language models

to gigabytes. In ACL Workshop on Software, 2005.
[4] X. Chen and A. Yuille. Detecting and reading text in natural

scenes. In CVPR, 2004.
[5] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005.
[6] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le,

M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and
A. Ng. Large scale distributed deep networks. In NIPS, 2012.

[7] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradi-
ent methods for online learning and stochastic optimiza-
tion. Journal of Machine Learning Research, 12:2121–2159,
2011.

[8] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural
scenes with stroke width transform. In CVPR, 2010.

[9] V. Goel, A. Mishra, K. Alahari, and C. Jawahar. Whole is
greater than sum of parts: Recognizing scene text words. In
ICDAR, 2013.

[10] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Improving neural networks by prevent-
ing co-adaptation of feature detectors. CoRR, abs/1207.0580,
2012.

[11] C. Jacobs, P. Simard, P. Viola, and J. Rinker. Text recognition
of low-resolution document images. In ICDAR, 2005.

[12] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. i Bigorda,
S. Mestre, J. Mas, D. Mota, J. Almazan, and L. de las Heras.
ICDAR 2013 Robust Reading Competition. In ICDAR, 2013.

[13] F. Kimura, T. Wakabayashi, S. Tsuruoka, and Y. Miyake. Im-
provement of handwritten Japanese character recognition us-
ing weighted direction code histogram. Pattern recognition,
30(8):1329–1337, 1997.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[15] A. Mishra, K. Alahari, and C. Jawahar. Top-down and
bottom-up cues for scene text recognition. In CVPR, 2012.

[16] V. Nair and G. Hinton. Rectified linear units improve re-
stricted Boltzmann machines. In ICML, 2010.

[17] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and
A. Ng. Reading digits in natural images with unsupervised
feature learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2011.

[18] L. Neumann and J. Matas. A method for text localization
and recognition in real-world images. In ACCV, 2010.

[19] W. Niblack. An Introduction to Digital Image Processing.
Prentice Hall, 1986.

[20] T. Novikova, O. Barinova, P. Kohli, and V. Lempitsky. Large-
lexicon attribute-consistent text recognition in natural im-
ages. In ECCV, 2012.

[21] Y. Pan, X. Hou, and C. Liu. Text localization in natural scene
images based on conditional random field. In ICDAR, 2009.

[22] S. Russell and P. Norvig. Artificial intelligence: A Modern
Approach. Prentice Hall, 1995.

[23] D. Smith, J. Field, and E. Learned-Miller. Enforcing simi-
larity constraints with integer programming for better scene
text recognition. In CVPR, 2011.

[24] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR, 2001.

[25] K. Wang, B. Babenko, and S. Belongie. End-to-end scene
text recognition. In ICCV, 2011.

[26] T. Wang, D. Wu, A. Coates, and A. Ng. End-to-end text
recognition with convolutional neural networks. In ICPR,
2012.

[27] J. Weinman, E. Learned-Miller, and A. Hanson. Scene text
recognition using similarity and a lexicon with sparse be-
lief propagation. Pattern Analysis and Machine Intelligence,
31(10):1733–1746, 2009.

4328


